
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 23
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Survey on Infrequent Itemset Mining Using
Frequent Pattern Growth

S.Nandhini, Mr.M.Yogesh prabhu, Dr.S.Gunasekaran

Abstract— Itemset mining is an effective area of research due to its successful application in various data mining scenarios like finding
association rules. There are two types of itemset mining namely, Frequent Itemset Mining and Infrequent Itemset Mining. The research
society has focused on the Infrequent Weighted Itemset Mining problem. The infrequent weighted itemset are item sets whose frequency of
occurrence in the analyzed data is less than or equal to a maximum threshold. Two algorithms are reviewed to find rare itemset, that are
infrequent weighted itemset (IWI) and Minimal Infrequent Weighted Itemset (MIWI) and this is based on the frequent pattern-growth
paradigm. Finally performance analysis of an algorithm has been shown in terms of execution time.

Index Terms— Itemset mining, Infrequent itemset, Frequent pattern growth, Association rule, Weighted Itemset, Minimal infrequent
patterns, Residual trees.

——————————  ——————————

1 INTRODUCTION

ATA MINING is the analysis of (often large) observa-
tional data sets to find unsuspected relationships and to

summarize the data in novel ways that are both understanda-
ble and useful to the data owner. Frequent itemsets are the
items that appear frequently in the transactions. The main goal
of frequent itemset mining is to identify all the itemsets in the
transaction data set, which are frequently purchased. Item sets
are defined as a non empty set of items. If itemset is with k-
different items is termed as a k-itemset. For example {bread,
butter, milk} may denoted as a 3-itemset in a supermarket
transaction. The Apriori algorithm is the initial solution for the
frequent pattern mining problem.

The problems of Apriori, which generates more candidate
sets and require more scans of database. To overcome the
problems of Apriori FP-Growth has been proposed. The uses
of FP Tree data structure without any candidate generation
and using only two database scans. Mining infrequent pat-
terns is a challenging task because there are an enormous
number of such patterns that can be derived from a known
data set. More exclusively, the key issues in mining infrequent
patterns are: (1) how to identify interesting infrequent pat-
terns, and (2) how to efficiently discover them in large data
sets.

2 LITERATURE SURVEY
2.1 Association Rule Mining

Association Rule is an important type of knowledge repre-
sentation to find implicit relationships among the items pre-
sent in large number of transactions. Rakesh Agrawal et al.[2]

introduced association rules for discovering regularities be-
tween products in large-scale transaction Given I = {i1,
i2,……..in} as the item space, which is the set of items, a trans-
action may be defined as the subset of I. The support of an
itemset X in a dataset D, denoted as supportD(X), is defined as
countD(X)/|D|, where count D(X) is the number of transac-
tions in D containing X. An itemset is to be frequent(large) if
support is larger than a user-specified value (also called mini-
mum support(min_sup)).An Association is the implication of
the form [X Y, sup , conf], where , , and

. The support of (sup) in the transactions is
larger than min_sup, furthermore when X appears in transac-
tion, Y is likely to appears in the same transaction with the
probability of confidence.

2.2 Apriori Algorithm Overview
Apriori algorithm for frequent item set mining and associa-

tion rule over transactional database. It proceeds by identify-
ing the frequent individual items in the database and extend-
ing them to larger and larger item sets as long as those item
sets appear sufficiently often in the database. To identify the
frequent item sets in the large transaction database. Two stag-
es of Apriori algorithm, first stage count item occurrence and
generate candidate item set and second count support candi-
date item.
Apriori Algorithm
 I = {Input as item sets};
For (k = 2; Lk-1≠0; k++) do begin Ck = apriori gen (Lk-1);
For all transactions t ԑ D do begin Ct = sub set (Ck, t);
 For all candidates c ԑ Ct do C.count++;
End Lk = {c ԑ Ck | c: count ≥ minsup}
end Output = Ụk Lk;

D

————————————————

• S.Nandhii is currently pursuing masters degree program in Software
Engineering in Coimbatore Institute of Engineering andTechnology, India,.
E-mail: nandhiniunique@gmail.com

• Mr.M.Yogesh Prabhu is currently working in Computer Science engineer-
ing in Coimbatore Institute of Engineering andTechnology, India,. E-
mail:yogeshprabhu1985@gmail.com

• Dr.S.Gunasekaran is currently working as head and Professor in Computer
Science engineering in Coimbatore Institute of Engineering andTechnolo-
gy, India,E-mail:gunaphd@yahoo.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 24
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

2.3 FP-Growth Algorithm Overview
The FP-Growth Algorithm is also to find frequent itemsets

without using candidate generations, thus improving perfor-
mance. The core of this method is the usage of a special data
structure named frequent-pattern tree (FP-tree), which retains
the itemset association information.

This algorithm works as follows:First it compresses the in-
put database creating an FP-tree instance to represent frequent
items. After this first step it divides the compressed database
into a set of conditional databases, each one associated with
one frequent pattern. Finally, each such database is mined
separately. Using this strategy, the FP-Growth reduces the
search costs looking for short patterns recursively and then
merging them in the long frequent patterns, offering good
selectivity.
FP-Growth Algorithm performs:
 Step 1: Construction of FP-tree.
Step 2: Extracts frequent itemsets directly from the FP-tree.
Construction of FP-Tree:
1. Create the root of the tree, labeled with “null”.
2. Scan the database D a second time. (First time we scanned it
to create 1-itemset and then L).
3. The items in each transaction are processed in L order (i.e.
sorted order).
4. A branch is created for each transaction with items having
their support count.
5. Whenever the same node is encountered in another transac-
tion, we just increment the support count of the common
node or Prefix.
6. To facilitate tree traversal, an item header table is built so
that each item points to its occurrences in the tree via a chain
of node-links.
7. Now, The problem of mining frequent patterns in database
is transformed to that of mining the FP-Tree.

In large databases, it’s not possible to hold the FP-tree in
the main memory. A strategy to cope with this problem is to
firstly partition the database into a set of smaller databases
(called projected databases), and then construct an FP-tree
from each of these smaller databases.

2.4 Minimal Infrequent Itemset Mining
A new algorithm designed specifically for finding minimal

infrequent itemset. They faces the issue of Infrequent Itemset
Mining problem. The problem status that, consider I=
{i1,i2,….iL} be a set of items. An itemset is a subset I ⊆ I. The
cardinality of I, denoted by |I|, is the number of items in the
itemset. A dataset, D = {t1,t2,...,tR}, is a collection of R transac-
tions of the form ti = (i,Ti), where i is the transaction identifier
(TID) and Ti ⊆ I. We denote by |D| the number of transactions
in the dataset. Given an itemset I, a transaction T is said to
contain I if I ⊆ T. The support set of an itemset I with respect
to the dataset D is D(I) = {ti ∈ D : I ⊆ Ti}.

Given a dataset D and an integer threshold τ, we say an item-
set I is
 τ-occurrent if |D(I)| = τ
 τ-frequent if |D(I)| ≥ τ
 τ-infrequent if |D(I)| < τ

 MINIT (MINimal Infrequent iTemsets) is the algo-
rithm developed to find minimal τ-infrequent itemsets. The
following steps explains MINIT algorithm, Initially, a ranking
of items is prepared by computing the support of each of the
items and then creating a list of items in ascending order of
support. Minimal τ-infrequent itemsets are discovered by con-
sidering each item ij in rank order, recursively calling MINIT
on the support set of the dataset with respect to ij considering
only those items with higher rank than ij, and then checking
each candidate MII against the original dataset.

2.5 Infrequent Weighted Itemset Mining
 IWI Miner is a FP-growth-like mining algorithm that per-

forms projection-based item set mining. FP-growth mining
steps: 1. FP-tree creation 2. Recursive item set mining from
the FP tree index. 3. IWI Miner discovers infrequent weighted
item sets instead of frequent (unweighted) ones. FP-growth
have been modified and new algorithm is introduced: (i) A
novel pruning strategy for pruning part of the search space
early and (ii) A slightly modified FP tree structure, which al-
lows storing the IWI-support value associated with each node.
Algorithm IWI-Miner(T,€)
Input-Weighted transaction dataset with support value €
1) F=0
2) Count item IWI (T)
3) Construct FP tree
4) For all weighted transaction
5) Calculate Equivalent transaction
6) For all transaction create and insert into FP tree
Output- Set of satisfying €

2.6 Infrequent Weighted Itemset Mining
MIWI Miner focuses on generating only minimal infre-

quent patterns, the recursive extraction in the MIWI Mining
procedure is stopped as soon as an infrequent item set occurs.
It finds both the infrequent item sets and minimal infrequent
item set mining.
IWI mining (T, € ,Prefix)
Input- Tree, a FP tree
Output- The set of IWIs
1) F=0 initialization
2) Create header table holds for all items i in tree
3) Generate a new item set I with prefix and support of item i
4) I – Infrequent item
5) Construct I as conditional pattern and FP tree
6) Select the infrequent items from the set
7) Remove from Tree and finally apply recursive mining

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 25
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

3 COMPARISION RESULT

IWI Miner and MIWI Miner performance on standard syn-
thetic datasets are analyzed. The comparison of MIWI Miner
and MINIT performance, in terms of execution time, on syn-
thetic data sets with different characteristics. Fig. 3.1 reports
the execution times achieved by varying the maximum sup-
port threshold in the range [0, 200] on two IBM synthetic data
sets with 100,000 transactions and two representative average
transaction length values (i.e., 10 and 15). The synthetic data
sets are characterized by a fairly sparse data distribution.

TABLE 1
 MIWI MINER AND MINIT IN TERMS OF EXECUTION TIME

Algorithm Support Threshold

0.1 0.2 0.3 0.4 0.5

MINIT 500 387 226 198 94
MIWI 104 85 53 41 24

0.1 0.2 0.3 0.4 0.5

Ex
ec

ut
io

n
Ti

m
e

(s
)

Threshold Value
MINIT

MIWI

Figure 1: Comparison between MIWI Miner and MINIT in terms of

execution time

4 CONCLUSION
This survey deals about the various frequent itemset mining
algorithm and the new algorithm for finding minimal infre-
quent itemset are reviewed. Two FP Growth-like algorithms
that accomplish IWI and MIWI mining efficiently are also re-
viewed and the performance analysis of MIWI and MINIT
also showed with respect to execution time. The future work
will be discovering maximum and minimum infrequent item-
set by integrating existing algorithm with residual trees.

REFERENCES
[1] Savasere, E. Omiecinski, and S.B. Navathe, “An efficient algorithm

for mining association rules in large databases,” Intl. Conf. on Very
Large Databases, pp. 432–444, 1995.

[2] Ashish Gupta, Akshay Mittal and Arnab Bhattacharya “Minimally
Infrequent Itemset Mining using Pattern-Growth Paradigm and Re-
sidual Trees”, 17th International Conference on Management of Data
(COMAD), 2011.

[3] X. Wu, C. Zhang, and S. Zhang “Efficient mining of both positive and
negative association rules”, ACM Transaction Information System,
vol. 22, issue 3, pp. 381–405, 2004.

[4] Agrawal, R.; Imieliński, T.; Swami, A. (1993). "Mining association
rules between sets of items in large databases". Proceedings of the 1993
ACM SIGMOD international conference on Management of data - SIG-
MOD '93. p. 207. doi:10.1145/170035.170072. ISBN 0897915925.

[5] F. Tao, F. Murtagh, and M. Farid, “Weighted Association Rule Min-
ing Using Weighted Support and Significance Framework,” Proc.
nineth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining (KDD ’03), pp. 661-666, 2003.

[6] Luca Cagliero and Paolo Garza, “Infrequent Weighted Itemset Min-
ing Using Frequent Pattern Growth,” IEEE TRANSACTION ON
KNOWLEDGE AND DATA ENGINEERING,VOL.26,NO.4, APRIL
2014

[7] D.J. Haglin and A.M. Manning, “On Minimal Infrequent Itemset
Mining,” Proc. Int’l Conf. Data Mining (DMIN ’07), pp. 141-147, 2007.

[8] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candi-
date Generation,” Proc. ACM SIGMOD Int’l Conf. Management of
Data, pp. 1-12, 2000.

[9] C.K. Chui, B. Kao, and E. Hung, “Mining Frequent Itemsets from
Uncertain Data,” Proc. 11th Pacific Asia Conf. Advances in
Knowledge Discovery and Data Mining (PAKDD ’07), pp. 47-58,
2007.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Literature Survey
	2.1 Association Rule Mining
	2.2 Apriori Algorithm Overview
	2.3 FP-Growth Algorithm Overview
	2.4 Minimal Infrequent Itemset Mining
	2.5 Infrequent Weighted Itemset Mining
	2.6 Infrequent Weighted Itemset Mining

	3 Comparision result
	4 Conclusion
	References

